5 research outputs found

    Multiple (inverse) binomial sums of arbitrary weight and depth and the all-order epsilon-expansion of generalized hypergeometric functions with one half-integer value of parameter

    Full text link
    We continue the study of the construction of analytical coefficients of the epsilon-expansion of hypergeometric functions and their connection with Feynman diagrams. In this paper, we show the following results: Theorem A: The multiple (inverse) binomial sums of arbitrary weight and depth (see Eq. (1.1)) are expressible in terms of Remiddi-Vermaseren functions. Theorem B: The epsilon expansion of a hypergeometric function with one half-integer value of parameter (see Eq. (1.2)) is expressible in terms of the harmonic polylogarithms of Remiddi and Vermaseren with coefficients that are ratios of polynomials. Some extra materials are available via the www at this http://theor.jinr.ru/~kalmykov/hypergeom/hyper.htmlComment: 24 pages, latex with amsmath and JHEP3.cls; v2: some typos corrected and a few references added; v3: few references added

    Role of IR-Improvement in Precision LHC/FCC Physics and in Quantum Gravity

    No full text
    IR-improvement based on amplitude-level resummation allows one to control unintegrable results in quantum field theory with arbitrary precision in principle. We illustrate such resummation in specific examples in precision LHC and FCC physics and in quantum gravity

    Physics and technology of the Next Linear Collider: a report submitted to Snowmass '96

    No full text
    We present the current expectations for the design and physics program of an e+e- linear collider of center of mass energy 500 GeV -- 1 TeV. We review the experiments that would be carried out at this facility and demonstrate its key role in exploring physics beyond the Standard Model over the full range of theoretical possibilities. We then show the feasibility of constructing this machine, by reviewing the current status of linear collider technology and by presenting a precis of our `zeroth-order' design

    4th ECFA / DESY Workshop on Physics and Detectors for a 90-GeV to 800-GeV Linear e+ee^{+}e^{-} Collider

    No full text
    corecore